Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33151911

RESUMEN

Diabetes mellitus (DM) and atrial fibrillation (AF) are major unsolved public health problems, and diabetes is an independent risk factor for AF. However, the mechanism(s) underlying this clinical association is unknown. ROS and protein O-GlcNAcylation (OGN) are increased in diabetic hearts, and calmodulin kinase II (CaMKII) is a proarrhythmic signal that may be activated by ROS (oxidized CaMKII, ox-CaMKII) and OGN (OGN-CaMKII). We induced type 1 (T1D) and type 2 DM (T2D) in a portfolio of genetic mouse models capable of dissecting the role of ROS and OGN at CaMKII and global OGN in diabetic AF. Here, we showed that T1D and T2D significantly increased AF, and this increase required CaMKII and OGN. T1D and T2D both required ox-CaMKII to increase AF; however, we did not detect OGN-CaMKII or a role for OGN-CaMKII in diabetic AF. Collectively, our data affirm CaMKII as a critical proarrhythmic signal in diabetic AF and suggest ROS primarily promotes AF by ox-CaMKII, while OGN promotes AF by a CaMKII-independent mechanism(s). These results provide insights into the mechanisms for increased AF in DM and suggest potential benefits for future CaMKII and OGN targeted therapies.


Asunto(s)
Fibrilación Atrial/enzimología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Complicaciones de la Diabetes/enzimología , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 1/enzimología , Diabetes Mellitus Tipo 2/enzimología , Acilación , Animales , Fibrilación Atrial/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Complicaciones de la Diabetes/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Ratones Noqueados , Oxidación-Reducción
2.
J Mol Cell Cardiol ; 138: 212-221, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31836540

RESUMEN

BACKGROUND: Activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) is established as a central intracellular trigger for various cardiac pathologies such as hypertrophy, heart failure or arrhythmias in animals and humans suggesting CaMKII as a promising target protein for future medical treatments. However, the physiological role of CaMKII is scarcely well defined. AIM & METHODS: To investigate the role of CaMKII in hyperacute pressure overload, we evaluated the effects of pressure overload induced by transverse aortic constriction (TAC) on survival, cardiac function, protein expression and excitation-contraction coupling (ECC) in female WT littermate vs. AC3-I mice 2 days after TAC (2d post TAC). AC3-I mice express the CaMKII inhibitor autocamtide-3 related inhibitory peptide (AiP) under the control of the α-myosin heavy chain promotor in the heart. RESULTS: CaMKII activation is significantly increased in WT TAC vs. sham mice 2d post TAC. Interestingly, survival is significantly reduced in AC3-I animals within the first five days after TAC compared to WT TAC littermates, while systolic cardiac function is markedly reduced in AC3-I TAC vs. AC3-I sham mice, but preserved in WT TAC vs. WT sham mice. Proteins regulating ECC such as ryanodine receptors (RyR2) and phospholamban (PLB) are hypophosphorylated at their CaMKII phosphorylation site in AC3-I TAC mice, but hyperphosphorylated in WT TAC mice compared to controls. In isolated cardiomyocytes fractional shortening is significantly impaired in AC3-I compared to WT mice 2d post TAC, and CaMKII incubation with AiP mimics the AC3-I phenotype in cardiomyocytes from WT TAC mice in vitro. In summary, this suggests cardiac dysfunction due to CaMKII inhibition as a potential cause of increased mortality in AC3-I TAC mice. However, proarrhythmic spontaneous Ca2+ release events (SCR) appear less frequent in cardiomyocytes from AC3-I TAC mice than in WT TAC mice. CONCLUSIONS: Our data indicate that excessive CaMKII inhibition as present in AC3-I transgenic mice leads to an impaired adaptation of ECC to hyperacute pressure overload resulting in diminished cardiac contractility and increased death. Thus, our data suggest that in pressure overload the activation of CaMKII is a pivotal, but previously unknown part of hyperacute stress physiology in the heart, while CaMKII inhibition, albeit potentially antiarrhythmic, can be detrimental. This should be taken into account for future studies with CaMKII inhibitors as therapeutic agents.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Presión , Animales , Aorta/patología , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Cardiomegalia/complicaciones , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Constricción Patológica , Diástole , Activación Enzimática , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Análisis de Supervivencia
4.
Nat Commun ; 6: 6081, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25603276

RESUMEN

Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.


Asunto(s)
Canales de Calcio/fisiología , Frecuencia Cardíaca/fisiología , Mitocondrias/metabolismo , Potenciales de Acción , Adenosina Trifosfato/química , Animales , Relojes Biológicos , Cafeína/química , Calcio/química , Calcio/metabolismo , Ecocardiografía/métodos , Electrocardiografía/métodos , Femenino , Genes Dominantes , Proteínas Fluorescentes Verdes/química , Corazón/fisiología , Técnicas In Vitro , Isoproterenol/química , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Miocitos Cardíacos/citología , NAD/química , Perfusión , Fosforilación , Transgenes
5.
Am J Respir Cell Mol Biol ; 52(1): 106-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24988374

RESUMEN

Asthma is a disease of acute and chronic inflammation in which cytokines play a critical role in orchestrating the allergic inflammatory response. IL-13 and transforming growth factor (TGF)-ß promote fibrotic airway remodeling, a major contributor to disease severity. Improved understanding is needed, because current therapies are inadequate for suppressing development of airway fibrosis. IL-13 is known to stimulate respiratory epithelial cells to produce TGF-ß, but the mechanism through which this occurs is unknown. Here, we tested the hypothesis that reactive oxygen species (ROS) are a critical signaling intermediary between IL-13 or allergen stimulation and TGF-ß-dependent airway remodeling. We used cultured human bronchial epithelial cells and an in vivo mouse model of allergic asthma to map a pathway where allergens enhanced mitochondrial ROS, which is an essential upstream signal for TGF-ß activation and enhanced collagen production and deposition in airway fibroblasts. We show that mitochondria in airway epithelium are an essential source of ROS that activate TGF-ß expression and activity. TGF-ß from airway epithelium stimulates collagen expression in fibroblasts, contributing to an early fibrotic response to allergen exposure in cultured human airway cells and in ovalbumin-challenged mice. Treatment with the mitochondrial-targeted antioxidant, (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), significantly attenuated mitochondrial ROS, TGF-ß, and collagen deposition in OVA-challenged mice and in cultured human epithelial cells. Our findings suggest that mitochondria are a critical source of ROS for promoting TGF-ß activity that contributes to airway remodeling in allergic asthma. Mitochondrial-targeted antioxidants may be a novel approach for future asthma therapies.


Asunto(s)
Antioxidantes/farmacología , Asma/tratamiento farmacológico , Asma/metabolismo , Colágeno/biosíntesis , Mitocondrias/metabolismo , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Factor de Crecimiento Transformador beta/biosíntesis , Animales , Asma/inducido químicamente , Asma/genética , Asma/patología , Células Cultivadas , Colágeno/genética , Modelos Animales de Enfermedad , Humanos , Interleucina-13/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta/genética
6.
Circulation ; 128(16): 1748-57, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24030498

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is a growing public health problem without adequate therapies. Angiotensin II and reactive oxygen species are validated risk factors for AF in patients, but the molecular pathways connecting reactive oxygen species and AF are unknown. The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a reactive oxygen species-activated proarrhythmic signal, so we hypothesized that oxidized CaMKIIδ could contribute to AF. METHODS AND RESULTS: We found that oxidized CaMKII was increased in atria from AF patients compared with patients in sinus rhythm and from mice infused with angiotensin II compared with mice infused with saline. Angiotensin II-treated mice had increased susceptibility to AF compared with saline-treated wild-type mice, establishing angiotensin II as a risk factor for AF in mice. Knock-in mice lacking critical oxidation sites in CaMKIIδ (MM-VV) and mice with myocardium-restricted transgenic overexpression of methionine sulfoxide reductase A, an enzyme that reduces oxidized CaMKII, were resistant to AF induction after angiotensin II infusion. CONCLUSIONS: Our studies suggest that CaMKII is a molecular signal that couples increased reactive oxygen species with AF and that therapeutic strategies to decrease oxidized CaMKII may prevent or reduce AF.


Asunto(s)
Fibrilación Atrial/etiología , Fibrilación Atrial/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Anciano , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Fibrilación Atrial/prevención & control , Señalización del Calcio/fisiología , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Femenino , Humanos , Masculino , Metionina Sulfóxido Reductasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
7.
J Clin Invest ; 123(3): 1262-74, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23426181

RESUMEN

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca(2+)/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diabetes Mellitus Experimental/enzimología , Infarto del Miocardio/enzimología , Nodo Sinoatrial/enzimología , Animales , Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Gasto Cardíaco , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/mortalidad , Femenino , Fibrosis , Frecuencia Cardíaca , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/mortalidad , Miocardio/enzimología , Miocardio/patología , Oxidación-Reducción , Estrés Oxidativo , Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Nodo Sinoatrial/patología , Nodo Sinoatrial/fisiopatología
8.
Antioxid Redox Signal ; 18(9): 1063-77, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22900788

RESUMEN

SIGNIFICANCE: In heart failure (HF), contractile dysfunction and arrhythmias result from disturbed intracellular Ca handling. Activated stress kinases like cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and Ca/calmodulin-dependent protein kinase II (CaMKII), which are known to influence many Ca-regulatory proteins, are mechanistically involved. RECENT ADVANCES: Beside classical activation pathways, it is becoming increasingly evident that reactive oxygen species (ROS) can directly oxidize these kinases, leading to alternative activation. Since HF is associated with increased ROS generation, ROS-activated serine/threonine kinases may play a crucial role in the disturbance of cellular Ca homeostasis. Many of the previously described ROS effects on ion channels and transporters are possibly mediated by these stress kinases. For instance, ROS have been shown to oxidize and activate CaMKII, thereby increasing Na influx through voltage-gated Na channels, which can lead to intracellular Na accumulation and action potential prolongation. Consequently, Ca entry via activated NCX is favored, which together with ROS-induced dysfunction of the sarcoplasmic reticulum can lead to dramatic intracellular Ca accumulation, diminished contractility, and arrhythmias. CRITICAL ISSUES: While low amounts of ROS may regulate kinase activity, excessive uncontrolled ROS production may lead to direct redox modification of Ca handling proteins. Therefore, depending on the source and amount of ROS generated, ROS could have very different effects on Ca-handling proteins. FUTURE DIRECTIONS: The discrimination between fine-tuned ROS signaling and unspecific ROS damage may be crucial for the understanding of heart failure development and important for the investigation of targeted treatment strategies.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sodio/metabolismo , Arritmias Cardíacas/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Humanos , Activación del Canal Iónico/fisiología , Transporte Iónico/fisiología , Mitocondrias Cardíacas/metabolismo , Modelos Cardiovasculares , Contracción Miocárdica , Miocardio/metabolismo , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Fosforilación , Procesamiento Proteico-Postraduccional , Sarcolema/metabolismo , Canales de Sodio/metabolismo , Superóxidos/metabolismo
10.
J Am Coll Cardiol ; 57(4): 469-79, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21251589

RESUMEN

OBJECTIVES: We investigated whether increased Ca(2+)/calmodulin-dependent kinase II (CaMKII) activity aggravates defective excitation-contraction coupling and proarrhythmic activity in mice expressing R4496C mutated cardiac ryanodine receptors (RyR2). BACKGROUND: RyR2 dysfunction is associated with arrhythmic events in inherited and acquired cardiac disease. METHODS: CaMKIIδc transgenic mice were crossbred with RyR2(R4496C+/-) knock-in mice. RESULTS: Heart weight-to-body weight ratio in CaMKIIδc/RyR2(R4496C) and CaMKIIδc mice was similarly increased approximately 3-fold versus wild-type mice (p < 0.05). Echocardiographic data showed comparable cardiac dilation and impaired contractility in CaMKIIδc/RyR2(R4496C) and CaMKIIδc mice. Sarcoplasmic reticulum Ca(2+) content in isolated myocytes was decreased to a similar extent in CaMKIIδc/RyR2(R4496C) and CaMKIIδc mice. However, relaxation parameters and Ca(2+) decay at 1 Hz were prolonged significantly in CaMKIIδc mice versus CaMKIIδc/RyR2(R4496C) mice. Sarcoplasmic reticulum Ca(2+) spark frequency and characteristics indicated increased sarcoplasmic reticulum Ca(2+) leak in CaMKIIδc/RyR2(R4496C) versus CaMKIIδc myocytes (p < 0.05), most likely because of increased RyR2 phosphorylation. Delayed afterdepolarizations were significantly more frequent with increased amplitudes in CaMKIIδc/RyR2(R4496C) versus CaMKIIδc mice. Increased arrhythmias in vivo (67% vs. 25%; p < 0.05) may explain the increased mortality in CaMKIIδc/RyR2(R4496C) mice, which died prematurely with only 30% alive (vs. 60% for CaMKIIδc, p < 0.05) after 14 weeks. CONCLUSIONS: CaMKIIδc overexpression in RyR2(R4496C+/-) knock-in mice increases the propensity toward triggered arrhythmias, which may impair survival. CaMKII contributes to further destabilization of a mutated RyR2 receptor.


Asunto(s)
Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Cardiomegalia/genética , Acoplamiento Excitación-Contracción/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Análisis de Varianza , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/metabolismo , Distribución de Chi-Cuadrado , Modelos Animales de Enfermedad , Ecocardiografía , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Ratones Transgénicos , Contracción Miocárdica/fisiología , Fosforilación , Distribución Aleatoria
11.
Circulation ; 122(10): 993-1003, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20733099

RESUMEN

BACKGROUND: Hemodynamic load regulates myocardial function and gene expression. We tested the hypothesis that afterload and preload, despite similar average load, result in different phenotypes. METHODS AND RESULTS: Afterload and preload were compared in mice with transverse aortic constriction (TAC) and aortocaval shunt (shunt). Compared with sham mice, 6 hours after surgery, systolic wall stress (afterload) was increased in TAC mice (+40%; P<0.05), diastolic wall stress (preload) was increased in shunt (+277%; P<0.05) and TAC mice (+74%; P<0.05), and mean total wall stress was similarly increased in TAC (69%) and shunt mice (67%) (P=NS, TAC versus shunt; each P<0.05 versus sham). At 1 week, left ventricular weight/tibia length was significantly increased by 22% in TAC and 29% in shunt mice (P=NS, TAC versus shunt). After 24 hours and 1 week, calcium/calmodulin-dependent protein kinase II signaling was increased in TAC. This resulted in altered calcium cycling, including increased L-type calcium current, calcium transients, fractional sarcoplasmic reticulum calcium release, and calcium spark frequency. In shunt mice, Akt phosphorylation was increased. TAC was associated with inflammation, fibrosis, and cardiomyocyte apoptosis. The latter was significantly reduced in calcium/calmodulin-dependent protein kinase IIdelta-knockout TAC mice. A total of 157 mRNAs and 13 microRNAs were differentially regulated in TAC versus shunt mice. After 8 weeks, fractional shortening was lower and mortality was higher in TAC versus shunt mice. CONCLUSIONS: Afterload results in maladaptive fibrotic hypertrophy with calcium/calmodulin-dependent protein kinase II-dependent altered calcium cycling and apoptosis. Preload is associated with Akt activation without fibrosis, little apoptosis, better function, and lower mortality. This indicates that different loads result in distinct phenotype differences that may require specific pharmacological interventions.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Hemodinámica/fisiología , Hipertrofia Ventricular Izquierda/fisiopatología , Remodelación Ventricular/fisiología , Animales , Aorta/fisiopatología , Apoptosis/fisiología , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/mortalidad , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/mortalidad , Ratones , Ratones Noqueados , MicroARNs/fisiología , Miocardio/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Transducción de Señal/fisiología
12.
Pflugers Arch ; 459(4): 569-77, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19898976

RESUMEN

The hypoxia-inducible factor (HIF)-1 is critically involved in the cellular adaptation to a decrease in oxygen availability. The influence of HIF-1alpha for the development of cardiac hypertrophy and cardiac function that occurs in response to sustained pressure overload has been mainly attributed to a challenged cardiac angiogenesis and cardiac hypertrophy up to now. Hif-1alpha (+/+) and Hif-1alpha (+/-) mice were studied regarding left ventricular hypertrophy and cardiac function after being subjected to transverse aortic constriction (TAC). After TAC, both Hif-1alpha (+/+) and Hif-1alpha (+/-) mice developed left ventricular hypertrophy with increased posterior wall thickness, septum thickness and increased left ventricular weight to a similar extent. No significant difference in cardiac vessel density was observed between Hif-1alpha (+/+) and Hif-1alpha (+/-) mice. However, only the Hif-1alpha (+/-) mice developed severe heart failure as revealed by a significantly reduced fractional shortening mostly due to increased end-systolic left ventricular diameter. On the single cell level this correlated with reduced myocyte shortenings, decreased intracellular Ca(2+)-transients and SR-Ca(2+) content in myocytes of Hif-1a (+/-) mice. Thus, HIF-1alpha can be critically involved in the preservation of cardiac function after chronic pressure overload without affecting cardiac hypertrophy. This effect is mediated via HIF-dependent modulation of cardiac calcium handling and contractility.


Asunto(s)
Presión Sanguínea/fisiología , Calcio/metabolismo , Corazón/fisiopatología , Hipertrofia Ventricular Izquierda/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Vasos Coronarios/anatomía & histología , Femenino , Corazón/fisiología , Hipertrofia Ventricular Izquierda/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Transgénicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
Circ Res ; 100(3): e32-44, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17272813

RESUMEN

The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are contradictory and do not pay tribute to the fact that probably spatial confinement of the nNOS enzyme is of major importance. We hypothesize that the close proximity of nNOS and certain effector molecules like L-type Ca(2+)-channels has an impact on myocardial contractility. To test this, we generated a new transgenic mouse model allowing conditional, myocardial specific nNOS overexpression. Western blot analysis of transgenic nNOS overexpression showed a 6-fold increase in nNOS protein expression compared with noninduced littermates (n=12; P<0.01). Measuring of total NOS activity by conversion of [(3)H]-l-arginine to [(3)H]-l-citrulline showed a 30% increase in nNOS overexpressing mice (n=18; P<0.05). After a 2 week induction, nNOS overexpression mice showed reduced myocardial contractility. In vivo examinations of the nNOS overexpressing mice revealed a 17+/-3% decrease of +dp/dt(max) compared with noninduced mice (P<0.05). Likewise, ejection fraction was reduced significantly (42% versus 65%; n=15; P<0.05). Interestingly, coimmunoprecipitation experiments indicated interaction of nNOS with SR Ca(2+)ATPase and additionally with L-type Ca(2+)- channels in nNOS overexpressing animals. Accordingly, in adult isolated cardiac myocytes, I(Ca,L) density was significantly decreased in the nNOS overexpressing cells. Intracellular Ca(2+)-transients and fractional shortening in cardiomyocytes were also clearly impaired in nNOS overexpressing mice versus noninduced littermates. In conclusion, conditional myocardial specific overexpression of nNOS in a transgenic animal model reduced myocardial contractility. We suggest that nNOS might suppress the function of L-type Ca(2+)-channels and in turn reduces Ca(2+)-transients which accounts for the negative inotropic effect.


Asunto(s)
Señalización del Calcio/fisiología , Contracción Miocárdica/fisiología , Óxido Nítrico Sintasa de Tipo I/fisiología , Disfunción Ventricular Izquierda/enzimología , Animales , Arginina/metabolismo , Cafeína/farmacología , Calcio/metabolismo , Canales de Calcio Tipo L/fisiología , Señalización del Calcio/genética , Tamaño de la Célula , Células Cultivadas/fisiología , Citrulina/biosíntesis , GMP Cíclico/metabolismo , Doxiciclina/farmacología , Inducción Enzimática/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Ratones Transgénicos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/fisiología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/biosíntesis , Óxido Nítrico Sintasa de Tipo I/genética , Ornitina/análogos & derivados , Ornitina/farmacología , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Volumen Sistólico , Ultrasonografía , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...